In situ preparation of magnetic Fe3O4 nanoparticles inside nanoporous poly(L-glutamic acid)/chitosan microcapsules for drug delivery.
نویسندگان
چکیده
The magnetic polymer microcapsules, as a promising environmental stimuli-responsive delivery vehicle, have been increasingly exploited to tackle the problem of remotely navigated delivery. This study presented a novel design and fabrication of magnetic poly(L-glutamic acid)/chitosan (PGA/CS) microcapsules. Magnetic Fe3O4 nanoparticles were in situ synthesized inside nanoporous PGA/CS microcapsules and resultant magnetic PGA/CS microcapsules were characterized. Mitoxantrone (MTX), an antineoplastic drug, was chosen as a water-soluble model drug to research the loading and release properties of the microcapsules. The results showed the carboxylate groups of PGA within polyelectrolyte walls could be used as binding sites for the absorption of iron ions and reaction sites for the synthesis of magnetic nanoparticles. Magnetic PGA/CS microcapsules were dissected using a dual-beam scanning electron microscope/focused ion beam (SEM/FIB) for morphological and microstructural examination. It was found that Fe3O4 nanoparticles with size of about 10nm were homogeneously dispersed in the polymer matrix and adhered to the pore walls of the microcapsules. Increasing the concentration of iron ions led to an increasing loading content of Fe3O4 nanoparticles and an increase in the resultant magnetization. The magnetic PGA/CS microcapsules could be easily manipulated by an external magnetic field. The MTX loading capacity depended on loading time and MTX concentration. The high loading could be ascribed to spontaneous deposition of MTX induced by electrostatic interaction. The microcapsules exhibited sustained release behavior. The MTX release from microcapsules could be best described using Korsmeyer-Peppas and Baker-Lonsdale models, indicating the diffusion mechanism of drug release from both PGA/CS microcapsules and magnetic PGA/CS microcapsules. Therefore, the novel magnetic PGA/CS microcapsules are expected to find application in drug delivery systems because of the properties of magnetic sensitivity, high drug loading and sustained release.
منابع مشابه
In Vivo Magnetic Resonance Imaging and Microwave Thermotherapy of Cancer Using Novel Chitosan Microcapsules
Herein, we develop a novel integrated strategy for the preparation of theranostic chitosan microcapsules by encapsulating ion liquids (ILs) and Fe3O4 nanoparticles. The as-prepared chitosan/Fe3O4@IL microcapsules exhibit not only significant heating efficacy in vitro under microwave (MW) irradiation but also obvious enhancement of T2-weighted magnetic resonance (MR) imaging, besides the excelle...
متن کاملDesign, Optimization Process and Efficient Analysis for Preparation of Copolymer-Coated Superparamagnetic Nanoparticles
Magnetic nanoparticles (MNPs) are very important systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover inorganic magnetic particles with an organic material, such as polymers. A superparamagnetic nanocomposite Fe3O4/poly(maleic anhydride-co-acrylic acid) P(MAH-co-AA) with a core/...
متن کاملPoly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone coated Magnetic nanoparticles as a pH-responsive magnetic Nano-carrier for controlled delivery of antibiotics
Objective(s): Pharmaceutical industries are leading to improved medications that can target diseases more effectively and precisely. Researchers have intended to reformulate drugs so that they may be more safely used in human body. The more targeted a drug is, the lower its chance of triggering drug resistance, a cautionary concern surrounding the use of broad-spectrum antibiotics. The aim of t...
متن کاملChitosan Functionalized Fe3O4@Au Core-Shell Nanomaterials for Targeted Drug Delivery
Chitosan functionalized Fe3O4-Au core shell nanoparticles have been prepared using a two-step wet chemical approach using NaBH4 as reducing agent for formation of Au in ethylene glycol. X-ray diffraction studies shows individual phases of Fe3O4 and Au in the as prepared samples with crystallite size of 5.9 and 11.4 nm respectively. The functionalization of the core-shell nanostructure with Chit...
متن کاملImmobilized transferrin Fe3O4@SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery
Transferrin (Tf) was immobilized onto Fe3O4@SiO2 nanoparticles with high doxorubicin (DOX) loading (TfDMP), for dual targeting of cancer, by chemically coupling both Tf and DOX with dual-function magnetic nanoparticles (DMPs) using a multi-armed crosslinker, poly-L-glutamic acid. With high trapping efficiency for magnetic targeting, TfDMP exhibits a Tf receptor-targeting function. Moreover, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Colloids and surfaces. B, Biointerfaces
دوره 113 شماره
صفحات -
تاریخ انتشار 2014